Path dependent Feynman–Kac formula for forward backward stochastic Volterra integral equations
نویسندگان
چکیده
Cet article étudie les relations entre équations intégrales de Volterra forward-backward stochastiques (FBSVIE) et un système d’équations aux dérivées partielles, non locales en temps, dépendant des trajectoires (PPDE). En raison la nature du type Volterra, propriété habituelle flot, ou semigroupe, n’est pas vérifiée. Inspirés par travaux Viens–Zhang (Ann. Appl. Probab. 29 (2019) 3489–3540) Wang–Yong (Stochastic Process. 129 4926–4964), nous introduisons processus auxiliaires sorte que flot solutions adaptées FBSVIE soit retrouvée dans sens approprié, formule d’Itô fonctionnelle applicable. Puis, exhibons une PPDE naturelle telle solution adaptée SVIE backward admet représentation termes forward via cette PPDE. Par ailleurs, à (dépendant trajectoire), ce interprétons comme Feynman–Kac. Ceci conduit l’existence l’unicité d’une classique PPDE, sous conditions régularité pour coefficients FBSVIE. De plus, l’hypothèse composante est dimension 1, on peut affaiblir ces introduisant nouvelle notion viscosité établir principe comparaison qui implique leur unicité. Enfin, certains résultats ont été étendus couplées BSVIE II, obtenue étude plus approfondie linéaires.
منابع مشابه
Mean-Field Backward Stochastic Volterra Integral Equations
Mean-field backward stochastic Volterra integral equations (MF-BSVIEs, for short) are introduced and studied. Well-posedness of MF-BSVIEs in the sense of introduced adapted Msolutions is established. Two duality principles between linear mean-field (forward) stochastic Volterra integral equations (MF-FSVIEs, for short) and MF-BSVIEs are obtained. Several comparison theorems for MF-FSVIEs and MF...
متن کاملOptimal Control Problems of Forward-Backward Stochastic Volterra Integral Equations with Closed Control Regions
Abstract. Optimal control problems of forward-backward stochastic Volterra integral equations (FBSVIEs, in short) with closed control regions are formulated and studied. Instead of using spike variation method as one may imagine, here we turn to treat the non-convexity of the control regions by borrowing some tools in set-valued analysis and adapting them into our stochastic control systems. A ...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملForward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations
In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jum...
متن کاملExistence and Uniqueness of M-solutions for Backward Stochastic Volterra Integral Equations
In this article, we study general backward stochastic Volterra integral equations (BSVIEs). Combining the contractive-mapping principle, stepby-step iteration method and mathematical induction, we establish the existence and uniqueness theorem of M-solution for the BSVIEs. This theorem could be applied directly to many models, for example, using the result to a kind of financial models provides...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1158